Author Age Prediction from Text using Linear Regression
نویسندگان
چکیده
While the study of the connection between discourse patterns and personal identification is decades old, the study of these patterns using language technologies is relatively recent. In that more recent tradition we frame author age prediction from text as a regression problem. We explore the same task using three very different genres of data simultaneously: blogs, telephone conversations, and online forum posts. We employ a technique from domain adaptation that allows us to train a joint model involving all three corpora together as well as separately and analyze differences in predictive features across joint and corpusspecific aspects of the model. Effective features include both stylistic ones (such as POS patterns) as well as content oriented ones. Using a linear regression model based on shallow text features, we obtain correlations up to 0.74 and mean absolute errors between 4.1 and 6.8 years.
منابع مشابه
A Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملPrediction Equations for Spirometry for Children from Northern India.
OBJECTIVE To develop prediction equations for spirometry for children from northern India using current international guidelines for standardization. DESIGN Re-analysis of cross-sectional data from a single school. PARTICIPANTS 670 normal children (age 6-17 y; 365 boys) of northern Indian parentage. METHODS After screening for normal health, we carried out spirometry with recommended qual...
متن کاملPrediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran
Background: Data mining (DM) is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR) and neural network (NN) models were examined u...
متن کامل